Extension and Convergence Theorems for Families of Normal Maps in Several Complex Variables
نویسندگان
چکیده
Let H(X, Y ) ( C(X, Y ) ) represent the family of holomorphic (continuous) maps from a complex (topological) space X to a complex (topological) space Y , and let Y + = Y ∪{∞} be the Alexandroff one–point compactification of Y if Y is not compact, Y + = Y if Y is compact. We say that F ⊂ H(X, Y ) is uniformly normal if {f ◦ φ : f ∈ F , φ ∈ H(M,X)} is relatively compact in C(M,Y +) (with the compact–open topology) for each complex manifold M . We show that normal maps as defined and studied by authors in various settings are, as singleton sets, uniformly normal families, and prove extension and convergence theorems for uniformly normal families. These theorems include (1) extension theorems of big Picard type for such families – defined on complex manifolds having divisors with normal crossings – which encompass results of Järvi, Kiernan, Kobayashi, and Kwack as special cases, and (2) generalizations to such families of an extension–convergence theorem due to Noguchi.
منابع مشابه
FURTHER RESULTS OF CONVERGENCE OF UNCERTAIN RANDOM SEQUENCES
Convergence is an issue being widely concerned about. Thus, in this paper, we mainly put forward two types of concepts of convergence in mean and convergence in distribution for the sequence of uncertain random variables. Then some of theorems are proved to show the relations among the three convergence concepts that are convergence in mean, convergence in measure and convergence in distributio...
متن کاملBest Proximity Points Results for Cone Generalized Semi-Cyclic φ-Contraction Maps
In this paper, we introduce a cone generalized semi-cyclicφ−contraction maps and prove best proximity points theorems for such mapsin cone metric spaces. Also, we study existence and convergence results ofbest proximity points of such maps in normal cone metric spaces. Our resultsgeneralize some results on the topic.
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملThe Concept of Sub-independence and Its Application in Statistics and Probabilities
Many Limit Theorems, Convergence Theorems and Characterization Theorems in Probability and Statistics, in particular those related to normal distribution , are based on the assumption of independence of two or more random variables. However, the full power of independence is not used in the proofs of these Theorems, since it is the distribution of summation of the random variables whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997